Finding a complete matching with the maximum product on weighted bipartite graphs
نویسندگان
چکیده
منابع مشابه
META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملMaximum semi-matching problem in bipartite graphs
An (f, g)-semi-matching in a bipartite graph G = (U ∪V,E) is a set of edges M ⊆ E such that each vertex u ∈ U is incident with at most f(u) edges of M , and each vertex v ∈ V is incident with at most g(v) edges of M . In this paper we give an algorithm that for a graph with n vertices and m edges, n ≤ m, constructs a maximum (f, g)semi-matching in running time O(m ·min( √∑ u∈U f(u), √∑ v∈V g(v)...
متن کاملFinding a Maximum 2-Matching Excluding Prescribed Cycles in Bipartite Graphs
We introduce a new framework of restricted 2-matchings close to Hamilton cycles. For an undirected graph (V,E) and a family U of vertex subsets, a 2-matching F is called U-feasible if, for each U ∈ U , F contains at most |U | − 1 edges in the subgraph induced by U . Our framework includes C≤k-free 2-matchings, i.e., 2-matchings without cycles of at most k edges, and 2-factors covering prescribe...
متن کاملA Novel Symbolic Algorithm for Maximum Weighted Matching in Bipartite Graphs
The maximum weighted matching problem in bipartite graphs is one of the classic combinatorial optimization problems, and arises in many different applications. Ordered binary decision diagram (OBDD) or algebraic decision diagram (ADD) or variants thereof provides canonical forms to represent and manipulate Boolean functions and pseudo-Boolean functions efficiently. ADD and OBDD-based symbolic a...
متن کاملMatching graphs of Hypercubes and Complete Bipartite Graphs
Kreweras’ conjecture [1] asserts that every perfect matching of the hypercube Qd can be extended to a Hamiltonian cycle. We [2] proved this conjecture but here we present a simplified proof. The matching graph M(G) of a graph G has a vertex set of all perfect matchings of G, with two vertices being adjacent whenever the union of the corresponding perfect matchings forms a Hamiltonian cycle. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1993
ISSN: 0898-1221
DOI: 10.1016/0898-1221(93)90199-6